

Route 31 Sludge Disposal Site Overview

Washington Township, Warren County, NJ

Margaret Gregor & Jon Byk, On-Scene Coordinators June 12, 2025 RRT Meeting

AGENDA

- Site background & history
- Ongoing removal action
- Ongoing drinking water & soil assessment
- Upcoming work & next steps
- Q&A

Site Background

- <u>2019</u>: annual drinking water sampling at a local business detected high levels of PFAS in groundwater
- PFAS = per & polyfluoroaklyl substances, or "forever chemicals," are a newly studied class of widely-used, long-lasting manmade chemicals which break down very slowly, typically used to repel oil & water
- <u>2020-2024</u>: NJ Department of Environmental Protection (DEP) investigated extent & source; found high PFAS levels in dozens of residential wells and in soil at several farm properties
 - Some treatment systems installed, waterline planned

PFAS Overview

- PFAS have unique chemical properties, are extremely toxic and generally are highly mobile
 - PFOA = perfluorooctanoic acid
 - PFOS = perfluorooctanesulfonic acid

- PFAS are newly studied "emerging contaminants" linked to harmful health effects
- EPA now has the full legal authority under the Superfund program to take action to protect people from certain PFAS from industrial sources, and recover costs
 - Currently, there are federal drinking water standards, Maximum Contaminant Levels (MCLs), for 12 PFAS
 - NJ to adopt federal MCLs by 2027; drinking water systems have until 2031

PFAS	EPA MCL (ppt*)
PFOA	4
PFOS	4
PFNA	10
	*parts per trillion

Site Background & History

- NJDEP Conclusion: main PFAS source is historic sludge disposal from a *former textile facility* in Washington Borough, which was spread as fertilizer over 45+ acres of farmland ~2 miles away
- <u>1946-1974</u>: Castle Creek Fabrics & Northern Dyeing Corp. cloth dyeing, screen printing & fabric finishing

- PFAS was a component of textile production chemicals & processes like those at this facility to impart water, oil & stain repellence/resistance

Site History

- <u>Mid-1950s to mid-1970s</u>: Castle Creek/Northern Dyeing reportedly discharged 300,000 gallons of wastewater per day + 12-14,000 gallons sludge per day, sprayed or dumped over farm fields & plowed in once dry
- <u>1966-1994</u>: Concerns over stressed vegetation documented in several investigations, but there was a lack of high contaminant detections, receptors, and documented migration of contaminants; we now realize PFAS toxicity

NJDEP Soil Results

- <u>Nov. 2022 May 2023</u>: 169 soil samples and several groundwater samples collected
- Highest PFAS in soil coincides with known sludge disposal areas and highest private well impacts
- Secondary source: WWTP

EPA Removal Action

• November 7, 2024: Site referral to EPA

- Integrated assessment for removal action & National Priorities List (NPL) consideration
- Assess PFAS uptake in crops & use of crops for livestock & human consumption
- <u>November 19, 2024</u>: emergency removal action initiated
 - 1. Provision of **bottled water** where PFAS levels > MCL
 - 2. Installation of individual whole-house water treatment systems to filter out PFAS & other contaminants
- <u>December 9, 2024</u>: bottled water provision began - now at 186 properties
- <u>Ongoing</u>: procurement of subcontractor for treatment systems

Typical Point-of-Entry Treatment (POET) system

Drinking Water Assessment

W. Asbury Anderson Road

Township

ICICS HIII ROM

mile

Shop Rite

MUSCON STREET

So far, of 348 samples,

63% have PFAS in well

water above the MCL

 4.5 sq. miles, 400+ wells where contamination may flow

 Hazard Ranking System package to score site for National Priorities List proposal

Also sampled surface water & sediment

> Legend Current Study Area Initial Study Area Municipal Boundaries Lake/Pond/Reservoir Stream/River

EPA Drinking Water Results

- Generally, highest levels near source areas, decreasing toward river
- Varied results due to complicated geology fractured bedrock
- All residents notified

Surface

stream

Legend

Maximum PFOS Concentration 0-12" (ng/g)

<=19 (EPA Residential RML)

<=100

<=1000 <=5000

>5000

Soil Assessment

- <u>March-April</u>: 815 samples from 5 active farmlands & 7 residences
 - Approx. 133 acres, upper 2' + some to 10'
- Risk assessment
- Work with Dept. of Agriculture, FDA, USDA & others on impacts to crops and potentially other farms

Source Material

Upcoming Work

- Data provision, continued outreach & community involvement
- Installation of individual treatment systems
- Potential expansion of drinking water assessment, including forensics analysis
- Evaluation of soil, surface water & sediment data
- Evaluate crop uptake
- Monitoring well installation?
- Potential proposal to National Priorities List

Thank you! QUESTIONS?

Margaret Gregor, On-Scene Coordinator Gregor.Margaret@epa.gov, 908-421-2624

Jon Byk, On-Scene Coordinator Byk.Jonathan@epa.gov, 347-899-6210

response.epa.gov/Route31Sludge

Extra Slides for Reference

Site Hydrogeology

Per- and Polyfluoroalkyl Substances (PFAS) History and Uses

ZEPEL

Per- and Polyfluoroalkyl Substances (PFAS): Meet the Family!

Perfluoroalkyl Acid (PFAA) Chemical Structure

Number of Carbons	4	5	6	7	8	9	10	11	12
PFCAs	Short-chain PFCAs			Long-chain PFCAs					
FFCAS	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA	PFDoA
PFSAs	PFBS	PFPeS	PFHxS	PFHpS	PFOS	PFNS	PFDS	PFUnS	PFDoS
	Short-chain PFSAs			Long-chain PFSAs					

Source: Interstate Technology and Regulatory Counci

Superfund Removal & Remedial Programs

THE SUPERFUND REMEDIAL PROCESS

Assessment	Characterization	Selection of Remedy	Cleanup	Post-Construction	
				٩ , , , , , , , , , , , , , , , , , , ,	
Discovery of Preliminary Site National Contamination Assessment Inspection Priorities List (NPL) Site Listing	Remedial Investigation/ Feasibility Study & Proposed Plan	Record of Decision	Remedial Remedial Design Action Five-Yea	Operation and NPL Maintenance Deletion r Reviews	
Community involvement and	d planning for a site	s redevelopment a	re integral to the entire	e process	
Current status of the Route 31 Sludge Disposal S	ite	NOTE: remo	oval actions car time and si	n occur at any multaneously.	

EPA vs. NJDEP Study Areas + Phasing

Berry

EPA Initial Drinking Water Study Area

EPA Site Team, Winter/Spring 2024-2025

Superfund - Removal Program

- Margaret Gregor, On-Scene Coordinator
- Jon Byk, On-Scene Coordinator
- Pat Ahern, On-Scene Coordinator
- Dave Rosoff, Sr. On-Scene Coordinator
- Kim Hong, On-Scene Coordinator
- Joe Rotola, Removal Program Supervisor

Superfund - Support

- Chloe Metz, Remedy Selection/Design & Construction Manager
- Ula Filipowicz, Risk Assessor
- Jinnie Hanlee, Risk Assessor
- John Mason, Hydrogeologist
- Rachel Griffiths, Hydrogeologist

Coordinating entities

Public Affairs Team

- Joel Waddell, Community Involvement Coordinator
- Shereen Kandil, Public Affairs Supervisor
- Stephen McBay, Press Officer
- Elias Rodriguez, Media Relations Supervisor

Superfund - Pre-Remedial Program

- James Desir, Site Assessment Manager
- Veronica Mannillo, Site Assessment Manager
- Ilde Acosta, Pre-Remedial Program Supervisor

Superfund - Enforcement Team

- Irmee Lopez, Enforcement Specialist
- Yvette Hamilton-Best, Site Attorney
- **Doug Fisher**, Supervisory Attorney

HQ & Contract Support

- Ofc. of Research & Development, Weston Solutions, ER
- NJDEP, NJDOH, Washington Township, Franklin Township, Warren County Public Works, Warren County Health, NJ Dept. of Agriculture, ATSDR, Musconetcong Watershed Association, National Park Service

Health Effects of PFAS: Identified for PFOA, PFOS and PFNA

- Non-cancer:
 - Increase in cholesterol levels and/or risk of obesity
 - Lower antibody response to some vaccines
 - Changes in liver enzymes
 - Reproductive effects such as decreased fertility, pregnancy-induced hypertension and preeclampsia
 - Developmental effects or delays in children, including low birth weight, accelerated puberty, bone variations, or behavior changes
- Cancer:
 - Increased risk of kidney and testicular cancer (PFOA) and liver cancer (PFOS)
 - Currently, there is inadequate information on whether PFNA can cause cancer

Resources for PFAS & Health

- EPA "PFAS Explained"
 - https://www.epa.gov/pfas/pfas-explained
- EPA Info on Treatment Technologies & Home Filters
 - <u>https://www.epa.gov/sciencematters/reducing-pfas-drinking-water-</u> <u>treatment-technologies</u>
- Agency for Toxic Substances & Disease Registry (ATSDR) PFAS & Health
 - https://www.atsdr.cdc.gov/pfas/index.html
- NJDOH PFAS Fact Sheet
 - <u>https://www.nj.gov/health/ceohs/documents/pfas_drinking%20water.pdf</u>