NRT Quick Reference Guide:
Hydrogen Cyanide (AC)
[Cohruger 2017 Undeta]

For references, please see Key References Cited/Used in National Response Team (NRT) Quick Reference Guides (QRGs) for Toxic Industrial Chemicals. QRGs are intended for Federal OSC/RPMs.

[Fe		updatej							Tor Federal					
Agent Characteristics	Descriptio detect a bit the reactior hydrocyanic lower the to oxidizing, Persistence purity of the persistence	n: Hydrogen c ter, almond od n of cyanide sa c acid, which ir pxicity but they acidic, or alka e: AC is consil e agent, metho e may occur via roperties are Vapo Press r = 1) 630 m	yanide (AC or from AC Its (see Cy a turn may alter the e: line comp dered "non d of releas: a conversio listed at/no r sure m Hg	ial Chemical, Sche is a colorless gas , and olfactory fatig- anide Salts QRG) form other cyanide xposure pathways. sounds. AC has a -persistent." Vapor e, environmental c n to cyanide ion (C ear STP unless of Volatility 1,080,000 mg/m ³ (77°F/25°C)	s above boiling pr gue onsets rapidl with acids. AC in e compounds, dej AC is flammab lower explosive conditions, and th CN ⁻), unless cond	bint (78°F/25.6°C y, diminishing this terferes with the b pending on pH. Ar le with a flash pc e limit (LEL) of 5.1 's; liquid: rapidly e e types of surface litions allow for vo ed. Conversion f Freezing Point) and a pale bl s safeguard. Ac pody's use of o C may combine bint of 0°F/-18 6% v/v and an evaporates at a es and material latilization.	ue or colorle: C is typically xygen, causi with chlorin C; explosiv upper explo- mbient temp s impacted. I = mg/m ³ x 0 / cange gas	ss liquid belo transported a ng asphyxiat e to form cya e potential i posive limit (l eratures and n the presen 9064; mg/m Liquid Der 0.684 g/mL (75°F/24°C	w boiling point as a compress ion. AC reacts anogen chlorid is severe in th JEL) of 40% v pressures. Pe ce of water at ³ = ppm x 1.1(sity	Only 60-70% ed gas or liqui with environm e. None of the e presence o /v. rsistence will o environmental	d, but may l ental moist se reaction: f heat, flan lepend upo pHs, signifi Non-aqu Solubilit Ethers, b chlorofor	be produced by ure to form s significantly ne, and n amount and icant AC	
	AIR RELEASE SCENARIOS ARE ASSUMED MOST PROBABLE; HOWEVER, OTHER RELEASE SCENARIOS AND EXPOSURE ROUTES SHOULD BE CONSIDERED.													
Release Scenarios	Open Areas: Due to its volatility, AC is easy to disperse as a gas, and the primary release/attack scenario is an airborne release. AC is expected to disperse or to degrade by reaction with encountered surfaces/materials. AC is reactive, extremely flammable and may ignite combustible materials. Water/Water Systems: AC released into or over natural waters or water systems can dissolve and form hydrocyanic acid and other cyanide compounds, depending on the pH. If a large cloud of AC is released, not all AC may dissolve before the AC cloud leaves the vicinity of the water. Indoor Facility: Due to its volatility, AC could potentially be dispersed as a gas inside a building or facility; HVAC systems could be impacted. Explosive vapors can be formed with oxidants, amines, and caustic and combustible materials. AC is slightly lighter than air and will follow prevailing air flows inside the buildings. Onset Onset of symptoms is dose and route dependent. Effects occur rapidly following exposure to AC. Inhalation exposure to AC gas produces symptoms within seconds to													
	Unset	minutes; d	leath may o	occur within minute	es. After skin exp	osure, symptoms	may be immed	liate or delay	ed 30-60 mir	nutes.				
Health Effects	Signs/ Symptoms	minutes; death may occur within minutes. After skin exposure, symptoms may be immediate or delayed 30-60 minutes. Appearance and severity of symptoms will vary depending upon exposure route, concentration and duration. However, the following is a general list of possible symptoms. AC interferes rapidly with the body's use of oxygen, particularly affecting the brain, cardiovascular system, and pulmonary system. Mild to Moderate: Headache, confusion, anxiety, dizziness, weakness, and loss of consciousness; heart palpitations; respiratory tract irritation, difficulty breathing; nausea, vomiting. Severe: Coma, seizures, dilated pupils, shock, abnormal heart rhythms, very low blood pressure, cardiac arrest. Abnormally rapid breathing followed by slow respirations, pulmonary edema and respiratory arrest. Blue discoloration of skin may be a late finding.												
	Exposure Routes	 Inhalation: The primary route of AC exposure is in gaseous form. Inhalation of very small concentrations can produce health effects. Skin: Irritation, tissue ulceration, burning and pain. Absorption through skin is rapid and can contribute to whole-body (systemic) toxicity (see Signs/Symptoms above). Eyes: Redness, pain, and severe deep burns. 												
	Ingestion: Nausea, vomiting, abdominal pain, and irritation and corrosion of lining of esophagus and stomach. Ingestion can contribute to whole-body (systemic) toxicity. Air: Acute Exposure Guideline Levels (AEGLs) for general population one-time exposure emergency scenarios for AC (complete definitions are available in Key References													
s				Guides for Toxic I exposure duration		als):	10 min.	30 mi	n	1 hr.	4 hr.	0	hr.	
Exposure Levels		Threshold mile			13		2.5	2.5		2.0	1.3	1.0		
	AEGL 2: Potentially irreversible effects or impaired ability to escape							10		7.1	3.5	2.		
	AEGL 3: Threshold for severe effects/medical needs/increasing potential for lethality 27 21 15 8.6 6.6 Exposure Guidelines: IDLH = 50 ppm; OSHA PEL (TWA) = 10 ppm (skin); NIOSH REL (STEL) = 4.7 ppm (skin); ACGIH TLV (ceiling) = 4.7 ppm (skin); Inhalation Provisional Advisory Level (PAL-1) for AC released for 24 hours = 0.025 ppm. Soil: Industrial Exposure Scenario = 610 mg/kg; Residential Exposure Scenario = 47 mg/kg. Drinking Water: 0.2 mg/L (maximum contaminant level as cyanide ion).													
	Note	Personal Protective Equipment (PPE) selection (levels A-D), medical surveillance requirements, First Aid options and personnel decontamination may vary depending upon the amount and purity of agent, site conditions and the release scenario. Additional information on personnel safety and PPE selection criteria can be found at: www.cdc.gov/niosh/ershdb . We also recommend that responders check their own internal procedures (i.e., SOPs), if applicable.												
	Medical			nysical and respiration hove and treat acc				eriodic on-si	e medical m	onitoring, obse	rve for any sig	ins and syn	nptoms as per	
Personnel Safety	First Aid	Health Effects section above and treat accordingly as per First Aid section below. Immediately remove person from affected area into fresh air and remove contaminated clothing and articles. Wash bare skin immediately with water, or warm, soapy water if available, at normal household pressures (~50-60 psi) for three minutes, ensure thorough soaking. Rinse eyes exposed to liquid AC with potable water for 15 minutes. Antidote: Amyl nitrite, I.V. sodium nitrite followed by sodium thiosulfate, and/or hydroxocobalamin for injection (e.g., Cyanokit*) can be administered by experienced medical staff. Provide cardiorespiratory supportive care, and administer 100% oxygen, for inhalation/oral exposures. Send person for follow-up medical attention and evaluation. If cleared to resume work, continue to monitor for signs/symptoms and treat accordingly. For exposure to cyanide salts, see Cyanide Salts QRG.												
		GENERAL INFORMATION: NIOSH-certified Chemical, Biological, Radiological, Nuclear (CBRN) Self Contained Breathing Apparatus (SCBA), Air Purifying Respirators (APR) or Powered Air Purifying Respirators (PAPR), full-face masks, and protective clothing should be used. Pre-incident training and exercises on the proper use of PPE are recommended. Per NIOSH guidance - LEVEL A: Recommended for the initial response to an AC incident. Level A provides the greatest level of skin (fully encapsulating suit), respiratory (SCBA), and eye protection when the contaminant identity or concentration is unknown. Select Level A when the AC concentration is unknown or above the IDLH or AEGL-2, and when there is a potential of ocular or dermal exposure. LEVEL B: Provides the highest level of respiratory protection (SCBA) when a lesser level of skin protection is required. Select Level B when the AC concentration is unknown or above the IDLH or AEGL-2 and dermal exposure is less of a risk. Level B differs from Level A in that it typically incorporates a non-encapsulating, splash-protective, chemical-resistant outer suit that provides protection against most liquids but is not vapor tight. LEVEL C: Select Level C when the contaminant identity and concentration are known and the respiratory protection criteria factors for the use of APR or PAPR (i.e., < IDLH, warning properties) are met. If using APR for Level C, use a filter suitable for inorganic gases and vapors. Level C may be appropriate when decontaminating performent or equipment. Note: AC gas is flammable and/or explosive at ambient temperatures in confined spaces. AC may have limited inhalation warning properties due to olfactory fatigue; use APR/PAPR with caution. LEVEL D: Select Level D when the contaminant iden times. Downgrading PPE levels can be considered only when the identity and concentration decupational exposure limit of less than AEGL-1 for the stated duration times. Downgrading PPE levels can be considered only when the identity and concentration of the contaminant												
	PPE	skin protectio Level A in tha LEVEL C: Se warning prop equipment. N olfactory fati exposure limi	n is require at it typically elect Level erties) are lote: AC ga igue; use t or less that	ed. Select Level B y incorporates a no C when the contar met. If using APR i as is flammable a APR/PAPR with c an AEGL-1 for the	when the AC con on-encapsulating, ninant identity an for Level C, use a nd/or explosive aution. LEVEL C stated duration ti	, splash-protective d concentration a a filter suitable for at ambient temp D: Select Level D imes. Downgradi	e, chemical-res re known and f inorganic gase peratures in co when the conta ng PPE levels	istant outer s he respirator es and vapor onfined spac iminant is kn can be con	suit that provi y protection s. Level C may ees. AC may own and the sidered only	ides protection criteria factors ay be appropri have limited concentration	against most for the use of ate when deco inhalation wa is below the a	liquids but i APR or PA Intaminating rning prop ppropriate o	s not vapor tight. PR (i.e., < IDLH, g personnel or erties due to occupational	
tion	Real-time f false nega equipment	skin protectio Level A in tha LEVEL C: Se warning prop- equipment. N olfactory fati exposure limi contaminant field screenin, tives may occ procured by m	n is require at it typically elect Level erties) are tote: AC ga igue; use a t or less the <u>and the ri</u> g tools (re ur in the p	ed. Select Level B y incorporates a no C when the contar met. If using APR i as is flammable a APR/PAPR with c an AEGL-1 for the	when the AC con on-encapsulating, ninant identity an for Level C, use a nd/or explosive aution. LEVEL C stated duration ti posure are know atory or quantit. erents common	, splash-protective d concentration a a filter suitable for at ambient temp D: Select Level D imes. Downgradi vn, and must be ative): Caution s in the environme	e, chemical-res re known and i inorganic gase eratures in cc when the conta ng PPE levels accompanied hould be give ent. The follow	istant outer s he respirator s and vapor infined space iminant is kn can be con by on-site r n to equipm ing is a sum	suit that provi y protection s. Level C may own and the sidered only nonitoring. ent that has mary of minir	ides protection criteria factors ay be appropri- have limited concentration y when the ide not been pro- num screening	against most for the use of ate when deco inhalation wa is below the a entity and cor perly evaluat concentratior	liquids but i APR or PA intaminating rning prop ppropriate o iccentration ed. False p i ranges or	s not vapor tight. PR (i.e., < IDLH, g personnel or verties due to occupational of the vositive and levels for	
etection	Real-time t false nega equipment and limitatio	skin protectio Level A in tha LEVEL C: Se warning prop- equipment. N olfactory fati exposure limi contaminant field screening tives may occ procured by m ons.	n is require at it typically elect Level erties) are tote: AC ga igue; use t or less that and the ri g tools (re our in the p any EPA a	ed. Select Level B y incorporates a no C when the contar met. If using APR as is flammable a APR/PAPR with c an AEGL-1 for the isks of dermal exp sults not confirm presence of interfor nd HAZMAT respon	when the AC con on-encapsulating, ninant identity an for Level C, use a nd/or explosive aution. LEVEL E stated duration ti posure are know atory or quantit. erents common onse teams. Othe	, splash-protective d concentration a a filter suitable for at ambient temp D: Select Level D imes. Downgradi vn, and must be ative): Caution s in the environm r screening tools	e, chemical-res re known and t inorganic gase veratures in cc when the conta ng PPE levels accompanied hould be give ent. The follow may be used b	istant outer s he respirator s and vapor infined space iminant is kn can be con by on-site r n to equipm ing is a sum y these team	suit that provi y protection s. Level C may own and the sidered only nonitoring. ent that has mary of minir is and other	ides protection criteria factors ay be appropri- have limited concentration y when the ide not been pro- num screening agencies and r	against most for the use of ate when deco inhalation wa is below the a entity and cor perly evaluat concentratior	liquids but i APR or PA intaminating rning prop ppropriate o iccentration ed. False p i ranges or	s not vapor tight. PR (i.e., < IDLH, g personnel or verties due to occupational of the vositive and levels for	
Id Detection	Real-time false nega equipment and limitation NOTE: D Minimum	skin protectio Level A in tha LEVEL C: Se warning prop equipment. N olfactory faiti contaminant field screening tives may occ procured by m ons. etection equip Screening	n is require at it typically elect Level erties) are tote: AC ga igue; use t or less that and the ri g tools (re our in the p any EPA a	ed. Select Level B y incorporates a no C when the contar met. If using APR as is flammable a APR/PAPR with c an AEGL-1 for the isks of dermal exp sults not confirm oresence of interfind HAZMAT responses not measure co Honeywell -	when the AC con on-encapsulating, ninant identity an for Level C, use a nd/or explosive aution. LEVEL C stated duration ti posure are know atory or quantiti. erents common onse teams. Othe ontaminant level Dräger - D	, splash-protective d concentration a a filter suitable for at ambient temp D: Select Level D imes. Downgradi vn, and must be ative): Caution s in the environm r screening tools s. Rather, they d räger XS/XXS	e, chemical-res re known and t inorganic gase veratures in cc when the conta ng PPE levels accompanied hould be give ent. The follow may be used b	istant outer s he respirator s and vapor infined space iminant is kn can be con by on-site r n to equipm ing is a sum y these team	suit that provi y protection s. Level C may own and the sidered only nonitoring ent that has mary of minir is and other at levels as M256/	ides protection criteria factors ay be appropri have limited concentration y when the ide not been pro num screening agencies and r listed below.	against most for the use of ate when deco inhalation wa is below the a entity and cor perly evaluat concentratior esponders, sc	liquids but i APR or PA intaminating rning prop ppropriate of iccentration ed. False p i ranges or me with sir	s not vapor tight. PR (i.e., < IDLH, g personnel or erties due to occupational of the ositive and levels for nilar capabilities	
Field Detection	Real-time false nega equipment and limitation NOTE: D Minimum	skin protectio Level A in tha LEVEL C: Se warning prop- equipment. N olfactory fati exposure limi contaminant field screening tives may occ procured by m ons.	n is require ti ti typically elect Level erties) are tote: AC ga igue; use <i>i</i> and the ri g tools (re ur in the p any EPA a	ed. Select Level B y incorporates a no C when the contar met. If using APR as is flammable a APR/PAPR with c an AEGL-1 for the isks of dermal ex sults not confirm oresence of interfind HAZMAT responses to the measure co	when the AC con on-encapsulating, ninant identity an for Level C, use a nd/or explosive aution. LEVEL D stated duration ti posure are knov atory or quantita erents common onse teams. Othe ontaminant level Dräger - Dr CDS Kit (s	splash-protective d concentration a a filter suitable for at ambient temp D: Select Level D imes. Downgradi wn, and must be ative): Caution s in the environm r screening tools s. Rather, they d	e, chemical-res re known and t inorganic gase veratures in cc when the conta ng PPE levels accompanied hould be give ent. The follow may be used b letect the pres MultiRAE	istant outer s he respirator and vapor infined spac minant is kn can be con by on-site r n to equipm ing is a sumi y these team ence of AC	suit that provi y protection s. Level C may own and the sidered only nonitoring. ent that has mary of minir as and other at levels as	ides protection criteria factors ay be appropri- have limited concentration y when the ide not been pro- num screening agencies and r listed below.	against most for the use of ate when deco inhalation wa is below the a entity and con perly evaluat concentration esponders, so hum CN ⁻ ening Poter	liquids but i APR or PA intaminating rning prop poropriate of iccentration ed. False p i ranges or me with sir tiometric	s not vapor tight. PR (i.e., < IDLH, g personnel or erties due to occupational of the ositive and levels for nilar capabilities	

Sampling	Note: This section on sampling contains general guidelines and does not replace the need for a site-specific sampling plan (See Key References Cited/Used) Sampling Concerns: Detection, sampling equipment and procedures, and analytical techniques will be site-specific and depend on: 1) physical state of the agent; 2) type of surfaces contaminated (e.g., porous vs. non-porous); 3) the purpose of sampling (e.g., characterization, decontamination efficacy and clearance); and 4) specific laboratory requirements. Because AC is reactive and volatile, field detection instead of laboratory analysis of samples may suffice and sometimes be necessary to achieve many goals of sampling. The U.S. Environmental Protection Agency (EPA) has set up mobile and fixed labs and analytical assets for chemical agent analysis of environmental samples under their Environmental Response Laboratory Network (ERLN), see ANALYSIS section below (www2.epa.gov/emergency-response/environmental-response-laboratory-network). For sampling questions, call the EPA/HQ-EOC at 202-564-3850.
	Sample Locations and Planning: Initially consider air monitoring to ensure worker safety and to determine if there is an AC cloud that could impact other areas. Characterization sampling is initiated by targeted or judgmental sampling to identify "hot spots," potential agent flow paths, and media or objects potentially acting as sinks. Additional biased or random sampling can be used to determine the extent of potential contamination or to verify the efficacy of decontamination. More thorough probabilistic sampling (e.g., grid, statistical approach) may be required for the clearance phase or if there are large uncertainties about the area impacted or the amount released. Because AC is reactive and generally not persistent, sampling/monitoring for a variety of cyanide compound breakdown and reaction products along with AC to help to "clear areas" should be included in the sampling plan. Concurrent air monitoring for AC is recommended during all sampling activities.
	Note: AC is highly volatile and reactive, forming a variety of cyanide compound breakdown and reaction products. Laboratory analysis may need to include these additional products. See ANALYSIS section below to ensure sampling procedures are compatible with all analytes. Types of Samples:
	Air (AC in gaseous form is slightly lighter than air): On-site AC monitors may provide sufficiently accurate real-time results. For lab analysis, samples are collected using appropriate solid phase absorbent media (e.g., NIOSH 6010, 6017) at breathing zone level (~5 ft.) to assess inhalation exposure and at ground levels (~6 in.) to assess off gassing at surfaces. Water: AC escapes from aqueous solutions and/or decomposes quickly, but is relatively easy to analyze in the field by colorimetric, titrimetric or potentiometric methods. Water samples should either be analyzed as quickly as possible or immediately preserved for later analysis. Total, free, and other forms of cyanide in solution can be analyzed for the presence of AC contamination of water systems. Concurrent air monitoring is recommended.
	Soil: For localized hot spot areas where soil deposition may occur, surface soil samples may be analyzed for AC and cyanide compounds and should be taken from a non-vegetated area to a depth of less than one inch. Measuring the pH of the soils may be sufficient. Concurrent air monitoring is recommended. Sub-surface soil samples may not be necessary unless a large amount of liquid was poured on the ground, or if an underlying aquifer is endangered.
	Surface Wipes: Although AC is very volatile, wipe samples are often desired to indicate the presence of AC and any cyanide compounds on non-porous surfaces. Bulk: Although AC is very volatile, for hot spot areas where liquid AC deposition may occur on porous surfaces (e.g., concrete, asphalt), actual pieces or cores of contaminated surface may be obtained using appropriate tools (scabbling, coring or drills) for subsequent laboratory extraction analysis for AC and any cyanide compounds. Bulk samples of suspected sink materials may be recommended to rule out absorption of AC and cyanide compounds into these materials. Other Sample Matrices: Contact EPA/HQ-EOC at 202-564-3850 for sampling instructions.
-	Sample Packaging and Shipping: The packaging and shipping of samples are subject to strict regulations established by DOT, CDC, USPS, OSHA and IATA. Contact the sample- receiving laboratory to determine if they have additional packaging, shipping or labeling requirements.
Analy sis	CAUTION: Many labs may not be able to perform analysis on all matrices (e.g., wipes and soil). The ERLN will use uniform, compatible sample prep and analytical methods. (See www2.epa.gov/emergency-response/environmental-response-laboratory-network). Cyanide testing methods include numerous forms, including: total, free, amenable, and other forms of cyanides, of which any or all may be appropriate for specific scenarios. Free cyanide ion (CN ⁻) may be accurately determined in the field using available meters and field kits. For access to the nearest ERLN laboratory specially trained and equipped for analysis of cyanide compounds other than free CN ⁻ that may be present at a particular site, contact the EPA/HQ-EOC
	at 202-564-3850. CAUTION: Use water spray only to reduce AC cloud or divert AC cloud drift. Avoid allowing water runoff to contact liquid AC. Use non-sparking tools. Confined liquid AC
Decontamination/Cleanup	 may violently polymerize in presence of heat, alkaline materials, or moisture. AC gas mixes well with air; flammable/explosive mixtures are easily formed. AC is so volatile that unless present in confined spaces or dissolved in confined liquids. It will dissipate quickly. Reaction of AC with environmental moisture can produce persistent, toxic cyanide compounds, which will need to be decontaminated. This decontamination refers to AC itself, along with cyanide compounds found in aqueous solutions of AC. Decontamination/Cleanup Planning: Once site controls are in place, develop a site-specific decommaniation/cleanup plan. Decontamination may require a "liered approach" using a variety of techniques and products. Call the EPAHQ-EOC at 202-564-3880 for more information. General Considerations: A cost vs. benefit evaluation should be undertaken for each decontamination strategy and approach that considers: public safety, total cost, impact on the facility, wastes generated, as well as the time the EPAHQ-EOC to be collected, treated and disposed of property. Waste handling and disposal must be addressed as early in the decontamination may be generated that will need to be collected, treated and disposed of property. Waste handling and disposal of contaminate materials. Certain materials may be resistant to decontamination formulations, or may be cheaper to discard and replace than to decontaminate during decontamination and recovery phases. Monitored natural attenuation: AC dissipates vian antural processes. Environmental monitoring must be maintained during decontamination and recovery phases. Monitored natural attenuation may require institutional controls (e.g., access restriction and contaminant containment measures). The time to achieve clearance must be considered in the overall cost/benefit evaluation. This option is more passive than other options but is non-destructive to materials. Fix-in-Place Option: AC dissipates rapidly via natural process
	CAUTION: Federal requirements for transporting hazardous materials and procedures for exemptions are specified in <u>www.fmcsa.dot.gov/safety-</u> security/hazmat/complyhmregs.htm#hmp. These regulations differ from state-to-state. Detailed state regulations can be found at <u>www.envcap.org/</u> . Current resources on packaging, labeling and shipping are available at <u>www.phmsa.dot.gov/hazmat</u> .
Waste Management	Waste Management: Under the Resource Conservation and Recovery Act (RCRA), solid waste can be classified as hazardous (subtille C) or non-hazardous (subtille D). The RCRA regulations generally define a waste as hazardous if it is: (1) a listed waste (40 CFR §261.31, §261.32), (2) exhibits specific characteristics (40 CFR §261.21-261.24) or (3) is a discarded commercial chemical product, off-specification species, container residue, or spill residue thereof (40 CFR §261.33). Hydrogen cyanide is listed under RCRA chemical code P063 for discarded commercial chemical products; soluble cyanide salts are listed as P030, and other specific cyanide salts are also listed (§261.33). Cyanide waste can also be reactive hazardous waste, chemical code D003, if it generates toxic gases when exposed to pH conditions between 2 and 12.5 (§261.23). Cyanide waste is approved for land disposal only if the concentration in the waste or treatment residual does not exceed 590 mg/kg for total cyanides or 30 mg/kg for amenable cyanides in non-wastewaters and 1.2 mg/L for total cyanides or 0.86 mg/L for amenable cyanides for wastewaters (§268.40). The States (except for Alaska and Iowa) have the primary responsibility to implement the hazardous waste regulations and can impose more stringent requirements than the Federal program, so it is critical to open a dialogue with regulators as early as possible. Management of toxic decomposition products, aweb-based tool that contains links to waste transportation guidance, treatment and disposal facilities, state regulatory offices, packaging guidance, and guidance to minimize the potential for contaminating the treatment or disposal facility. Access to this decision support tool requires pre-registration (www2.ergweb.com/bdrtool/login.asp).