

Real-time Assessment of Thermal-Work Strain: Algorithmic Basis and Validity

Mark J. Buller Ph.D. Biophysics and Biomedical Modeling Division U.S. Army Research Institute of Environmental Medicine

The views expressed in this presentation are those of the author and do not reflect the official policy of the Department of Army, Department of Defense, or the U.S. Government.

UNCI ASSIFIED

- Thermal-Work Strain Monitoring Need
- Solution: The Physiological Strain Index (PSI)
- Problem of measuring Core Temp.
- Estimated Core Temperature (ECTemp) Model
 - Physiological Basis of Model
 - Development
 - Validation
- Real-time use of ECTemp in PSI

Thermal-Work Strain State?

Engine Strain

ARMY MEDICINE Bringing Value...Inspiring Trust

Physiological Strain Index (PSI)

$$PSI = 5\left(\frac{CT_t - CT_{rest}}{39.5 - CT_{rest}}\right) + 5\left(\frac{HR_t - HR_{rest}}{180 - HR_{rest}}\right)$$

Simple 0 to 10 index
➢ PSI = 10
HR =180 beats/min.
≻CT = 39.5 °C (103.1 °F
Thermal injury is likely

*Moran DS, Shitzer A, and Pandolf KB 1998, Moran DS 2000

PSI	Thermal- Work Strain
<5	Low
5-6	Moderate
7-8	High
9-10	Very High
>10	Extreme

Problem of CT Measurement

- Rectal /Esophageal
 - Lab gold standards
 - Not practical in field
- Core temperature pill
 - Works in controlled studies
 - Costly, contra-indicated for some,
 - Prone to error with ingested fluids
- Skin and Tympanic Temperatures
 - Error from environment, error from placement, individual differences

Estimated Core Temp. Model

Estimated Core Temp. Model

Learned Models

1. To use a Kalman Filter you need two models:

i. How does core body temperature change from time step to time step?

ii. How does steady state core temperature relate to steady state heart rate?

- 9 Studies, 87 Subjects, >50,000 data points
- Different: Exercise Intensity, Environmental Conditions, Clothing (shorts and t-shirt full encapsulation), Hydration, and Acclimation.

dv	Time	n	Age	Height	Wt.	Body	TEE	Air	RH
Stu	(\min_{n})		(yrs)	(m)	(kg)	Fat	Rate	Temp.	(%)
•1						(%)	(W) †	(°C)	
A	~480 x 6	18*	22±4	1.77±0.04	81±15	N/C	350/470	20-40	30-50
В	121/121	8	23±3	N/C	72±12	N/C	1000	33	50
С	111/28	6/8	23±6	1.76 ± 0.06	76±15	18±6	675	35	55
D	59/100	7	24±7	1.78 ± 0.08	80±21	16±11	550	45	20
Е	140	11	27±6	1.77 ± 0.05	82±5	14 ± 3	675	25	85
F	1441	7	27±2	1.78 ± 0.08	86±6	N/C	200	9–13	83–95
G	209+250	8	21±1	1.80 ± 0.07	85±9	15±3	200	39–47	9–13
Η	683+488	8	21±2	1.84 ± 0.04	86±6	16 ± 3	400	20	20–26
Ι	297/244	8	28± 6	1.95 ± 0.09	86±14	13±4	Var./685	15–20	65–85

Algorithm Validation

- 9 Studies, 87 Subjects, >50,000 data points
- Different: Exercise Intensity, Environmental Conditions, Clothing (shorts and t-shirt full encapsulation), Hydration, and Acclimation.

CBRNE Validation

- 22nd Chemical Battalion, 1st WMD-CST, 95th WMD-CST
- 3 Different CBRNE Training Events
 - 45 to 90 minute events over 2 to 3 days

- Performance
 - Root Mean Square Error (RMSE)
 - Bias and Limits of Agreement (LoA)
- Questions
 - Does the model perform the same between:
 - Training events
 - Volunteers who got the hottest versus those who remained cool
 - Different time points

Hot = Quartile of "hottest" (highest core temperatures) Cool = Quartile of "coolest" (lowest core temperatures)

- No significant differences between:
 - Event
 - Hottest quartile and Coolest quartile

Overall Results

Bias = 0.02° C, LoA = $\pm 0.48^{\circ}$ C

USARI

Physiological Strain Index (PSI)

$$PSI = 5\left(\frac{CT_t - CT_{rest}}{39.5 - CT_{rest}}\right) + 5\left(\frac{HR_t - HR_{rest}}{180 - HR_{rest}}\right)$$

Simple 0 to 10 index
➢ PSI = 10
➤ HR =180 beats/min.
➤ CT = 39.5 °C (103.1 °F
Thermal injury is likely

*Moran DS, Shitzer A, and Pandolf KB 1998, Moran DS 2000

PSI	Thermal- Work Strain
<5	Low
5-6	Moderate
7-8	High
9-10	Very High
>10	Extreme

MEDICINE

IV&V

- MIT Lincoln Laboratory, Data from USMC Marine Expeditionary Rifle Squad
- 30 U.S. Marines, Jungle Warfare Training Center, Okinawa Japan, 12 Days, ~ 8 hours per day.
- Small bias and limits of agreement 0.01 ± 1.20

IV&V

- MIT Lincoln Laboratory, USMC Marine Expeditionary Rifle
 Squad Mark Richter
- 30 U.S. Marines, Jungle Warfare Training Center, Okinawa Japan, 12 Days, ~ 8 hours per day.
- Small bias and limits of agreement 0.01 ± 1.20

Real-Time Use

• US Marine Corps, Camp Geiger, School of Infantry – East (2015)

• 22nd Chemical Battalion, 1st WMD-CST, 95th WMD-CST, (2012 and 2013)

HOME	Subject View MAP VIEW ANA	LYTICS CON	FIGURE SUPPORT				-	leqView	
CRT	- Medical Tele	emetry	v Monito	or			(•، 🕲	
*	Session: Week 25 Session 2		Current Group:	All Groups			Page Size	: -0	
Heat Risk	Heat Risk Trend Past Future	Future Heat Risk (+15)	Subject Details	Heart Rate	Core Temp (Estimated)	Skin Temperature	Orientation	Last Updated	
9.8		11.2	3060005 Subject 06	131 ≻	37.8 ≻	37.3 ≻	•		
2.5		2.2	3060001 Subject 05	127 ^	36.4 ≻	36.0 ≻		< 15s	
8.0		9.9	1150001 Subject 04	121 ≻	37.2 ≻	36.7 ^			
4.7	PSI 2.3	1.2	3060004 Subject 03	90 ≻	36.6 ≻	36.1 ^	-	< 15s	
1.9	••••	5.3	3060008 Subject 02	96 ≻	36.1 ≻	35.5 ¥	T		
6.9		2.4	3060012 Subject 01	134 ≻	36.7 ▲	36.2 ¥		< 15s	
						JCL	AS	SIFI	F
Copyright © 20	12 Hidalgo Limited	LOGGE	D IN: AdminUser @ USAI	RIEM Log Out				equi⊽ital	

Real-Time Use

• US Marine Corps, Camp Geiger, School of Infantry – East (2015)

High PSI used to identify Marine who was struggling

ST, (2012 and 2013)

6:15

137

Conclusions

- Core temperature prediction algorithm:
 - based on classic physiology and established signal processing methods
 - performance similar to laboratory gold standard
- Validated and independently verified
- Using estimated core temperature within PSI has been demonstrated in real-time during field training

Example Heat Casualty

UNCLASSIFIED

USARIEM

USARIE